
UltraCart Advanced JavaScript Checkout API Developers Guide

Written by UC Pro Services

Copyright© 2009-2010 BPS Info Solutions, Inc.

Last Updated 12/15/2010

2

Contents

UltraCart Advanced JavaScript Checkout API Developers Guide ... 1

Background ... 6

Prerequisite skills for using the API .. 7

Support ... 7

Setting up the API on your page ... 7

Object Model... 8

Cart ... 9

CartCoupon ... 11

CartItem .. 11

CartItemAttribute .. 12

CartItemMultimedia .. 12

CartItemMultimediaThumbnail .. 12

CartItemOption ... 13

CartItemOptionValue ... 13

CartKitComponentOption .. 14

CheckoutHandoffResult ... 14

CheckoutTerms .. 14

CustomerProfile ... 15

CustomerProfileAddress .. 16

Distance... 16

GiftSettings .. 16

GiftWrap.. 17

Item ... 17

ItemAttribute... 18

ItemMultimedia ... 18

ItemMultimediaThumbnail .. 18

ItemOption .. 19

ItemOptionValue ... 19

ShippingEstimate ... 20

Weight ... 20

API Methods .. 21

3

addItems ... 21

applyCoupon ... 21

applyGiftCertificate .. 22

backgroundUpdateCart.. 22

clearFinalizeAfter ... 23

clearItems .. 23

checkoutHandoff ... 24

checkoutHandoffOnCustomSSL .. 25

createCart.. 25

establishCustomerProfile ... 26

establishCustomerProfileImmediately ... 26

estimateShipping ... 27

getAdvertisingSources ... 27

getAllowedCountries ... 28

getCart .. 29

getCartInstance ... 29

getCartItemMultimediaThumbnail ... 30

getCheckoutTerms ... 30

getCustomerProfile .. 31

getGiftSettings ... 31

getItem .. 32

getItemMultimediaThumbnail ... 32

getItems .. 33

getParameterValues .. 33

getParameterValues .. 34

getRelatedItems .. 34

getReturnPolicy ... 35

getStateProvinces .. 35

getStateProvinceCodes .. 36

getTaxCounties .. 36

googleCheckoutHandoff .. 37

googleCheckoutHandoffOnCustomSSL ... 37

4

initializeCheckoutApi ... 38

logError ... 38

loginCustomerProfile ... 39

logoutCustomerProfile ... 39

paypalHandoff ... 40

paypalHandoffOnCustomSSL.. 40

removeCoupon .. 41

removeGiftCertificate .. 41

removeItem ... 41

removeItems ... 42

resetCustomerProfilePassword .. 42

setFinalizeAfter .. 43

subscribeToAutoResponder ... 43

updateCart .. 44

updateCustomerProfile .. 44

updateItems .. 45

validate.. 45

validateAll .. 46

validateGiftCertificate .. 46

Making an Asynchronous Call .. 47

Global Variables... 48

Cookie Issues ... 48

Building a Custom Upsell After Sequence .. 48

XHR Issues and the Relay Script ... 49

Automatic Updating of the Global Cart Variable .. 50

Call Logging and Javascript Error Handling ... 50

Implementing buySAFE on a Custom Checkout .. 50

Handling Reloads with Error Messages .. 53

Performance Considerations.. 53

Using JQuery with the Mootools Framework ... 53

Working with JSON Dates .. 54

5

6

Background

Through the many years that UltraCart has been around we have found the customers have always

wanted a wide variety of features in their checkout. UltraCart has been built to accommodate almost all

the requests people have come upon with, but they’re represents in a standard way. The regular

checkout is at least six pages long and the single page checkout is three pages long including the receipt

and in progress page. This is necessary to accommodate all the different business rules associated with

the large numbers of features.

We found that most merchants would do a nice job branding up their checkout and choose either the

single page checkout or regular checkout based upon their business scenario. We then started noticing

that a new group of merchants started forming. These merchants either tried to heavily manipulate the

screens on the checkout using CSS and JavaScript or created their own custom forms on their website

that posted the information into the checkout process. There are two main drawbacks to this style of

customization. For the merchants that used CSS and JavaScript to customize the checkout there always

were inherent limitations as to how far they could take it. For merchants that built custom forms on

their website they always dumped the customer into the normal checkout if there were any errors

associated with the form.

There had to be a better way to provide the merchant near complete flexibility to build whatever

checkout best suits their business. Certain custom checkouts increase sales 15-20%. When that means

six or seven figure increases in sales it’s not good business sense to not pursue building one. The ROI

on the development time required to build one can quickly be recorded. Our solution is the JavaScript

Checkout API.

The JavaScript Checkout API is a lightweight API that allows the web page to control the UltraCart

shopping cart process. Merchants can develop almost any kind of checkout using the API. The API is

built around popular cross-browser compatible frameworks like MooTools and JQuery to make sure it

operates robustly and efficiently.

7

Prerequisite skills for using the API

In order to program against this API you need to be very familiar with javascript programming. This is

not for people that have never coded AJAX style javascript before. You also need to be familiar with

Javascript Object Notation (JSON).

Support

Due to the complex nature of implanting custom checkouts, all support related to building or

troubleshooting a custom checkout is considered premium support which has an hourly cost associated

with it. All questions related to using this API are beyond the scope of regular free email or phone

support. You should factor this in when considering whether to build a custom checkout.

Setting up the API on your page

The first thing you need to do in order to use the API is include the proper version of MooTools and the

API itself. Next you need to initial the merchant ID that is going to be used with the API. Below is a

sample snippet of code that you would place in the page. This should happen in the <HEAD> tag of your

page.

<script type="text/javascript" src="https://secure.ultracart.com/js/mootools-1.2-core-yc.js"></script>
<script type="text/javascript" src="https://secure.ultracart.com/checkoutapi/checkoutapi.js"></script>
<script type="text/javascript">
 initializeCheckoutAPI("MID");
</script>

8

Object Model

There are lots of simple objects that comprise the API. Below we will list out the names of each object

and describe what it is. Then on subsequent pages we will detail all the fields on the object.

Class Description

Cart Represents a shopping cart.

CartChangeResult Object returned after a cart change. Contains the cart plus any errors.

CartCoupon Represents a coupon that has been applied to a shopping cart

CartItem An item in the shopping cart.

CartItemAttribute The attributes configure on the item that is in the shopping cart.

CartItemOption The option that is associated with an item.

CartItemOptionValue The values in a drop down list or radio button type option.

CartKitComponentOption If an item is a kit and the component has an option then it's represented

with this object.

CheckoutHandoffResult The result object returned when you hand off the cart into the UltraCart

checkout.

CustomerProfile A customer profile that can be associated with a shopping cart.

CustomerProfileAddress An address in the customer profile's billing or shipping address book.

Distance A object to represent a distance. Used on the item dimensions.

GiftSettings All the settings associated with gift giving on the store.

GiftWrap A wrapping papers configuration details.

Item Represents an item configure on the store.

ItemAttribute The attributes configured on the item.

ItemMultimedia The multimedia configured on the item.

ItemMultimediaThumbnail The thumbnail of a multimedia object.

ShippingEstimate A shipping estimate returned from UltraCart for a shopping cart

Weight An object to represent a weight. Used on the item weight.

9

Cart

This object represents a complete shopping cart session of the customer.

Field Description

String cartId The unique ID for the cart. This needs to be stored as

a cookie on the customer's browser so that the cart

can be retrieved.

String paymentMethod Type of payment method. See the

PAYMENT_METHOD_ constants in the checkoutapi.js

file for valid values.

String creditCardType Type of credit card. See the CREDIT_CARD_TYPE_

constants in the checkoutapi.js file for valid values.

String creditCardNumber Credit card number

integer creditCardExpirationMonth Credit card expiration month 1 = January 12 =

December

integer creditCardExpirationYear Credit card expiration year. Must be a four digit year.

String creditCardVerificationNumber Credit card verification number 4 digits for American

Express and 3 digits for all other types of credit cards.

boolean collectCreditCardVerificationNumber True if the CVV2 should be collected for this merchant.

String purchaseOrderNumber Purchase order number

String billToFirstName Bill to first name

String billToLastName Bill to last name

String billToTitle Bill to title

String billToCompany Bill to company

String billToAddress1 Bill to address line 1

String billToAddress2 Bill to address line 2

String billToCity Bill to city

String billToState Bill to state

String billToPostalCode Bill to postal code

String billToCountry Bill to country. Must be a valid country name from the

getAllowedCountries() API call.

String billToDayPhone Bill to day phone

String billToEveningPhone Bill to evening phone

String email Email address

boolean mailingListOptIn Whether the customers wants to receive news and

special offers via email.

String shipToFirstName Ship to first name

String shipToLastName Ship to last name

String shipToTitle Ship to title

String shipToCompany Ship to company

String shipToAddress1 Ship to address line 1

String shipToAddress2 Ship to address line 2

String shipToCity Ship to city

String shipToState Ship to state

String shipToPostalCode Ship to postal code

String shipToCountry Ship to country. Must be a valid country name from

the getAllowedCountries() API call.

String shipToPhone Ship to phone

10

String shippingMethod Shipping method

boolean needShipping true if the cart needs shipping calculated.

Date shipOnDate Ship on date (optional)

Date deliveryDate Delivery date (optional)

boolean shipToResidential True if the address is residential.

String specialInstructions Special instructions for delivery.

CartItem[] items All the items in the cart.

number subtotal Subtotal

number subtotalDiscount Subtotal discount (because of coupon)

number subtotalWithDiscount Subtotal after discounts have been applied

number taxExempt True if the customer is tax exempt

number taxRate Tax rate

number tax Tax

number taxableSubtotal Taxable subtotal

number taxableSubtotalDiscount Taxable subtotal discount (because of coupons)

number taxableSubtotalWithDiscount Taxable subtotal after discounts.

number buysafeBondCost Cost of the buySAFE bond (for buySAFE merchants

only)

number shippingHandling Shipping and handling cost

number shippingHandlingDiscount Shipping and handling discount (because of coupon)

number shippingHandlingWithDiscount Shipping and handling cost after discount applied.

number giftCharge Gift charge

number giftCertificateAmount Gift certificate amount

number giftWrapCost Gift wrap cost

String giftMessage Gift message

number surcharge Credit card surcharge amount

number total Total

boolean buysafeBondAvailable buySAFE bond availability

number buysafeBondFree True if the buySAFE bond is free to the customer

boolean buysafeBondWanted True if the customer has opted in to a buySAFE bond

String buysafeBondingSignal The HTML code for the buySAFE flash control

String buysafeBondingSignalJavascript The Javascript code for the buySAFE flash control

String buysafeCartDisplayText The sales text to display by the buySAFE control

String buysafeCartDisplayUrl The URL to link the sales text to so the customer can

learn more about buySAFE.

String ipAddress IP Address of the customer. Used for geo-location of

shipping estimates.

String screenBrandingThemeCode The screen branding theme associated with the cart.

String advertisingSource Advertising source the customer selected or entered.

CartCoupon[] coupons Coupons that have been applied to the cart.

boolean hasPayPal True if the merchant has PayPal enabled.

boolean payPalCompatible True if this cart is compatible with PayPal

String payPalButtonUrl URL of the PayPal express checkout image

String payPalButtonAltText Alt text to use on the PayPal express checkout image

boolean hasGoogleCheckout True if the merchant has Google Checkout enabled.

boolean googleCheckoutCompatible True if this cart is compatible with Google Checkout

String googleCheckoutButtonUrl URL of the Google Checkout express checkout image

String googleCheckoutButtonAltText Alt text to use on the Google Checkout image.

11

String customField1 A custom field to store up to 50 characters.

String customField2 A custom field to store up to 50 characters.

String customField3 A custom field to store up to 50 characters.

String customField4 A custom field to store up to 50 characters.

String customField5 A custom field to store up to 50 characters.

boolean insureShipAvailable True if bond is available.

boolean insureShipSeparate True if the bond would be separate from shipping.

number insureShipCost Cost of the bond

Boolean insureShipWanted True/false if the bond is wanted. This will be null if the

customer has not made a choice yet.

String taxCounty The tax county assigned to this customer. See method

getTaxCounties().

CartCoupon

This object represents a coupon that has been applied to a shopping cart.

Field Description

String couponCode The coupon code used by the customer.

CartItem

This object represents a an item currently in the shopping cart.

Field Description

integer itemOid A unique item object identifier. This is provided to easy debugging

with UltraCart premium support.

String itemId Item ID

String description Description

String extendedDescription Extended description

number quantity Quantity

number unitCost Unit cost of item

number unitCostWithDiscount Unit cost of item after discounts (because of a coupon or mix and

match groups)

number arbitraryUnitCost Arbitrary unit cost (not functional at this time)

Weight weight Weight of the item

Distance length Length of the item

Distance width Width of the item

Distance height Height of the item

boolean kit True if this item is a kit

String autoOrderSchedule Schedule to put this auto orderable item on (only applicable if the

item is configured for customer selected auto order)

CartItemOption[] options Options on the item that customer needs to provide

CartKitComponentOption[]

kitComponentOptions

Kit component options that the customer needs to provide

CartItemAttribute[] attributes Attributes configured on the item

Boolean upsell True if this item was added to the cart as part of an upsell

number The MSRP of the item.

12

manufacturerSuggestedRetailPrice

CartItemMultimedia[]

multimedias

Multimedia objects available for this item.

number minimumQuantity The minimum quantity of this item the customer must purchase.

number maximumQuantity The maximum quantity of this item a customer can purchase.

CartItemAttribute

An attribute that has been configured on an item that is in the shopping cart.

Field Description

String name Name of the attribute

String value Value of the attribute

integer position Position of the attribute in the attribute list

String type Type of attribute

CartItemMultimedia

This object represents a multimedia file that is configured on an item.

Field Description

String type Type of multimedia file. See the ITEM_MULTIMEDIA_TYPE_

constants in the checkoutapi.js file for a list of valid values.

boolean isDefault True if this is the default multimedia object for it's type.

Please note there can be a default image, default video,

default PDF file, etc. all on the same item.

integer imageWidth Width if this is an image.

integer imageHeight Height if this is an image.

String viewUrl URL to view the multimedia file.

String description Description

String code Code

boolean excludeFromGallery True if the file should be excluded from gallery displays

CartItemMultimediaThumbnail[]

thumbnails

Thumbnails available for this image.

CartItemMultimediaThumbnail

This object represents a thumbnail of a multimedia image.

Field Description

integer height Height of the thumbnail in pixels

integer width Width of the thumbnail in pixels

String httpUrl URL to view the thumbnail

String httpsUrl Secure URL to view the thumbnail

13

CartItemOption

This object represents an option on one of the items in the shopping cart.

Field Description

integer optionOid A unique option object identifier. This is provided to easy debugging

with UltraCart premium support.

String name Option name

String label Option display label

boolean required True if required

Boolean ignoreIfDefault True if option will be ignored on the order if the default value is

selected

String type Type of option. See OPTION_TYPE_ constants in the checkoutapi.js

for a list of valid values.

boolean oneTimeFee True if the fee is only applied once (irregardless of quantity)

number costPerLine Fee per line of text specified in a multiline option

number costPerLetter Fee per letter specified in a single or multiline option

number costIfSpecified Fee if specified

String selectedValue Seleted value on the option

CartItemOptionValue[] values Values that the customer can select from for radio or drop down

style options

CartItemOptionValue

This object represents an option on one of the items in the shopping cart.

Field Description

String value Value of the option

number additionalCost Additional cost the customer will pay if they select this option

Weight additionalWeight Additioanl weight included in the order if they select this option

boolean defaultValue True if this option value should be the default

integer displayOrder Order in quick the options should be displayed. Lower display orders

should come first.

14

CartKitComponentOption

This object represents an option on one of the kit components of a kit item in the shopping cart.

Field Description

String itemId Item id of the kit component item that this option belongs to.

integer itemOid Item oid of the kit component item that this option belongs to.

integer optionOid A unique option object identifier. This is provided to easy debugging

with UltraCart premium support.

String name Option name

String label Option display label

boolean required True if required

Boolean ignoreIfDefault True if option will be ignored on the order if the default value is

selected

String type Type of option. See OPTION_TYPE_ constants in the checkoutapi.js

for a list of valid values.

boolean oneTimeFee True if the fee is only applied once (irregardless of quantity)

number costPerLine Fee per line of text specified in a multiline option

number costPerLetter Fee per letter specified in a single or multiline option

number costIfSpecified Fee if specified

String selectedValue Seleted value on the option

CartItemOptionValue[] values Values that the customer can select from for radio or drop down

style options

CheckoutHandoffResult

This object is returned by all handoff calls.

Field Description

String redirectToUrl The URL that the customer's browser should be redirected to for the

handoff. This will be null if there are errors.

String[] errors The errors that occurred while validating the handoff.

CheckoutTerms

This object is returned from the getCheckoutTerms method.

Field Description

String text The text of the checkout terms

Boolean html True if the text is HTML, otherwise it’s plain text that should be

formatted accordingly.

15

CustomerProfile

This object represents a customer profile.

Field Description

integer customerProfileOid The customer profile object id. This is provided to make

debugging easier by UltraCart premium support.

String email Email address associated with the customer profile

boolean taxExempt True if the customer is tax exempt

boolean allowPurchaseOrder True if the customer is allowed to use a purchase order

boolean autoApprovePurchaseOrder True if the purchase order will automaticall be approved

boolean allowCod True if the customer is allowed to use a COD

boolean autoApproveCod True if the COD will automatically be approved

boolean freeShipping True if the customer receives free shipping

Number freeShippingMinimum Amount required to qualify for free shipping. Value will be

null if there is no threshold specified

String firstName First name

String lastName Last Name

String title Title

String company Company

String address1 Address line 1

String address2 Address line 2

String city City

String postalCode Postal Codew

String country Country

String dayPhone Day phone

String eveningPhone Evening phone

String fax Fax

String taxId Tax ID

Number minimumSubtotal Minimum subtotal the customer is required to purchase. Will

be null if no threshold is specified

Integer minimumItemCount Minimum item count the customer is required to purchase.

Wil be null if no threshold is specified.

boolean noRealtimeCharge True if the customer credit card will not be charged real-time

during the checkout process.

boolean

exemptShippingHandlingCharge

True if the customer is exempt from shipping and handling

charges

boolean noFreeShipping True if the customer is prevented from standard retail

customer free shipping

boolean allow3rdPartyBilling True if the customer is allowed to bill the shipping to their 3
rd

party account number.

boolean noCoupons True if the customer is not allowed to use coupons

String upsAccountNumber 3
rd

 party account number to bill the UPS shipping to

String fedexAccountNumber 3
rd

 party account number to bill the FedEx shipping to

String dhlAccountNumber 3
rd

 party account number to bill the DHL shipping to

String[] pricingTiers Array of all the pricing tiers this customer has been granted

CustomerProfileAddress[]

billingAddresses

Addresses in this customer's billing address book

CustomerProfileAddress[] Addresses in this customer's shipping address book

16

shippingAddresses

String password New password for the customer profile. Can only be set

before a call to updateCustomerProfile.

CustomerProfileAddress

This object represents an address in the customer profile's address book.

Field Description

String firstName First name

String lastName Last name

String company Company

String address1 Address line 1

String address2 Address line 2

String city City

String state State

String postalCode Postal code

String country Country

String dayPhone Day Phone

String fax Fax

String eveningPhone Evening phone

String title Title

String taxCounty Tax county

Distance

An object that represents distance in a specific unti of measure.

Field Description

String uom The unit of measure. See DISTANCE_UOM_ constants in the

checkoutapi.js file for a list of valid values.

number value The value of the distance in the specified unit of measure.

GiftSettings

All the settings about gift giving that are available during the checkout to the customer.

Field Description

boolean allowGifts True if the customer is allowed to give a gift

number giftCharge Charge for sending the order as a gift

integer maxMessageLength Maximum length of the gift message

GiftWrap[] giftWraps Wrapping papers that are available to the customer

17

GiftWrap

Represents a gift wrap that is available for the customer to select

Field Description

String title Title of the gift wrap

number cost Cost to the customer if they select this gift wrap

String url URL to the image of the gift wrap

Item

This object represents an item. This is a different object than the CartItem which represents the item

after it's been added to the cart.

Field Description

integer itemOid Unique item object identifier. Provided to make debugging

easier by UltraCart premium support

String itemId Item ID

String description Description

String extendedDescription Extended description

number cost Cost

Weight weight Weight

Distance length Length

Distance width Width

Distance height Height

ItemAttribute[] attributes Attributes on the item

ItemMultimedia[] multimedias Multimedia on the item

int availableQuantity The quantity of this item in stock and available for immediate

shipment

boolean inStock True if this item is instock

boolean allowBackorder True if this item can be back ordered

boolean preorder True if this item is on pre-order

Boolean inventoryTracked True if this item is tracking inventory levels

ItemOption[] options The options that are available on this item.

number

manufacturerSuggestedRetailPrice

The MSRP of the item.

number minimumQuantity The minimum quantity the customer must purchase.

number maximumQuantiy The maximum quantity the customer can purchase.

18

ItemAttribute

An object representing an attribute configured on the item.

Field Description

String name Name of the attribute

String value Value of the attribute

String type Type of the attribute

ItemMultimedia

This object represents a multimedia file that is configured on an item.

Field Description

String type Type of multimedia file. See the ITEM_MULTIMEDIA_TYPE_

constants in the checkoutapi.js file for a list of valid values.

boolean isDefault True if this is the default multimedia object for it's type.

Please note there can be a default image, default video,

default PDF file, etc. all on the same item.

integer imageWidth Width if this is an image.

integer imageHeight Height if this is an image.

String viewUrl URL to view the multimedia file.

String description Description

String code Code

boolean excludeFromGallery True if the file should be excluded from gallery displays

ItemMultimediaThumbnail[]

thumbnails

Thumbnails available for this image.

ItemMultimediaThumbnail

This object represents a thumbnail of a multimedia image.

Field Description

integer height Height of the thumbnail in pixels

integer width Width of the thumbnail in pixels

String httpUrl URL to view the thumbnail

String httpsUrl Secure URL to view the thumbnail

19

ItemOption

This object represents an option on an item.

Field Description

integer optionOid A unique option object identifier. This is provided to easy debugging

with UltraCart premium support.

String name Option name

String label Option display label

boolean required True if required

Boolean ignoreIfDefault True if option will be ignored on the order if the default value is

selected

String type Type of option. See OPTION_TYPE_ constants in the checkoutapi.js

for a list of valid values.

boolean oneTimeFee True if the fee is only applied once (irregardless of quantity)

number costPerLine Fee per line of text specified in a multiline option

number costPerLetter Fee per letter specified in a single or multiline option

number costIfSpecified Fee if specified

String selectedValue Seleted value on the option

ItemOptionValue[] values Values that the customer can select from for radio or drop down

style options

ItemOptionValue

This object represents an option on one of the items in the shopping cart.

Field Description

String value Value of the option

number additionalCost Additional cost the customer will pay if they select this option

Weight additionalWeight Additioanl weight included in the order if they select this option

boolean defaultValue True if this option value should be the default

integer displayOrder Order in quick the options should be displayed. Lower display orders

should come first.

20

ShippingEstimate

This object represents the estimate for a shipping method on a cart.

Field Description

String name Name of the shipping method. If this method is selected by

the customer than this is the method name that should be set

on the cart.shippingMethod field.

String displayName Name of this method that should be displayed to the

customer.

String comment Comment associated with the shipping method.

String estimatedDelivery Estimated delivery time. Should be displayed beside the

method if it's available.

number cost Cost of the shipping method

boolean discounted True if this method has been discounted because of a coupon.

Weight

An object that represents weight in a specific unti of measure.

Field Description

String uom The unit of measure. See WEIGHT_UOM_ constants in the

checkoutapi.js file for a list of valid values.

number value The value of the weight in the specified unit of measure.

21

API Methods

addItems

Method Signature

String[] addItems(CartItem[] items);

Description

Adds the specified item(s) to the cart. The minimum amount of information that must be specified on the

CartItem object is itemId and quantity. If you want to pass in options then you'll also need to populate those

fields. The global cart variable is automatically included in the call to the server and updated after the call is

complete.

Parameters

CartItem[] items – The array of items to add to the cart.

Result

String[] –All the errors that occurred while trying to add the items to the cart. If this array is

empty then the addition was successful. If this array contains any values then you'll want to

display the errors to the customer. This could include things like out of stock conditions, invalid

item ids, etc. Even if the errors array contained something the global cart variable is updated.

applyCoupon

Method Signature

String[] applyCoupon(String couponCode);

Description

Applies a coupon to the cart. The global cart variable is automatically submitted with this call.

Parameters

String couponCode – the coupon code to use.

Result

String[] –The errors associated with applying the coupon code. These could range from invalid

coupon codes to coupon conflicts. If this array contains any values then you should display

them to the customer. Even if the errors array contained something the global cart variable is

updated automatically.

22

applyGiftCertificate

Method Signature

Cart applyGiftCertificate(String giftCertificateCode);

Description

Applies a gift certficiate to the cart. A cart can only have one gift certificate on it. You should call the

validateGiftCertificate method before calling this method. The global cart variable is automatically

submitted with this call.

Parameters

String giftCertificateCode – the gift certificate code to use.

Result

Cart – the updated cart that reflects the applied gift certificate.

backgroundUpdateCart

Method Signature

void backgroundUpdateCart()

Description

Updates all the fields on a cart, except for the item information. The cart does not have to be passed ot this

method because the method knows to submit the global cart variable. This method is used to update the

cart inside of UltraCart without using the return result to modify the global cart object. This method should

not be called directly. Instead use triggerBackgroundUpdateCart() on your on* handlers. This helper

method will set a 2.5 second timeout and then fire the backgroundUpdate call automatically. If they

continue typing, etc. then the timer is automatically reset. This drasticly minimizes the amount of traffic back

and forth to the server while still effectively capturing the customer's information for abandon marketing.

Parameters

None

Result

None

23

clearFinalizeAfter

Method Signature

boolean clearFinalizeAfter ()

Description

This method will clear the finalize timer that you might have set with the setFinalizeAfter method. This

would typically only be called if the customer choose some type of navigation where they were going to

continue to browse your entire store. This is not a common method to need to call.

Parameters

None

Result

Boolean – returns true if the timer was successfully cleared.

clearItems

Method Signature

String[] clearItems();

Description

Removes all the items from the cart. The global cart variable is automatically submitted to the server.

Parameters

None

Result

String[] –All the errors that occurred while trying to remove all the items from the cart. This

should rarely ever contain anything, but it still should be checked and handled properly by the

client. Even if the errors array contained something the global cart variable is updated.

24

checkoutHandoff

Method Signature

CheckoutHandoffResult checkoutHandoff(String returnOnErrorUrl, String

errorMessageParameterName);

Description

Hands off the customer's cart into the UltraCart checkout. If the merchant has upsells configured then the

customer will be shown those upsells. Then the customer will see the inprogress screen and if the payment

is successful the receipt. If there are any errors then the customer is going to be redirect back to the page

specific as a parameter and the errors will be appended as query string parameters.

Parameters

String returnOnErrorUrl – the URL to return the browser to if there are any errors.

String errorMessageParameterName – the query string parameter name to put the errors into.

If there is more than one error then there will be multiple parameters on the query string with

the same name. Be careful to read and display these errors to the customer properly.

Result

CheckoutHandoffResult – Inspect the errors array on the handoff object. If there are any errors

you'll need to display them to the customer first and have them correct them before they can

continue. If there are no errors then there will be a redirectToUrl populated. You will need to

change the browser's window location to this URL to successfully hand off the browser.

25

checkoutHandoffOnCustomSSL

Method Signature

CheckoutHandoffResult checkoutHandoffOnCustomSSL(String secureHostName, String

returnOnErrorUrl, String errorMessageParameterName);

Description

Hands off the customer's cart into the UltraCart checkout. If the merchant has upsells configured then the

customer will be shown those upsells. Then the customer will see the inprogress screen and if the payment

is successful the receipt. If there are any errors then the customer is going to be redirect back to the page

specific as a parameter and the errors will be appended as query string parameters. The checkoutHandoff

method above should be used if the merchant does not have a custom SSL on their account.

Parameters

String secureHostName – the custom SSL host name that you want the customer to finish their

order on.

String returnOnErrorUrl – the URL to return the browser to if there are any errors.

String errorMessageParameterName – the query string parameter name to put the errors into.

If there is more than one error then there will be multiple parameters on the query string with

the same name. Be careful to read and display these errors to the customer properly.

Result

CheckoutHandoffResult – Inspect the errors array on the handoff object. If there are any errors

you'll need to display them to the customer first and have them correct them before they can

continue. If there are no errors then there will be a redirectToUrl populated. You will need to

change the browser's window location to this URL to successfully hand off the browser.

createCart

Method Signature

Cart createCart();

Description

Creates a new shopping cart and returns the Cart object. The cart.cartId parameter should be stored in a

cookie so that subsequent requests to the page can use the cartId in a call to getCart.

Parameters

None

Result

Cart – the newly created cart.

26

establishCustomerProfile

Method Signature

Cart establishCustomerProfile(String email, String password);

Description

This function will store the email address on the cart and the password for the new customer profile that will

be created when the customer finalizes the checkout.

Parameters

String email – the email address of the customer.

String password – the password to be used on the customer profile.

Result

Cart – the updated cart. The global cart variable is automatically updated after this call.

establishCustomerProfileImmediately

Method Signature

Cart establishCustomerProfileImmediately(String email, String password);

Description

This function will create a new customer profile immediatey and associate it with the cart. If the customer

does not complete their order, the customer profile will still be created.

Parameters

String email – the email address of the customer.

String password – the password to be used on the customer profile.

Result

Cart – the updated cart. The global cart variable is automatically updated after this call.

27

estimateShipping

Method Signature

ShippingEstimate[] estimateShipping();

Description

Estimates the shipping for a given cart. This can be used to display all the shipping options that are

available to the customer. Typically this is done as a set of radio buttons. Some merchants may choose to

set the shipping cost at the lowest one that is available and not give the customer the option of selecting

shipping.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

ShippingEstimate[] – An array of shipping estimates for the given cart. The estimates will be

sorted lowest to highest in cost. If the cart contains items that require shipping and this array is

empty then an error condition is present.

getAdvertisingSources

Method Signature

String[] getAdvertisingSources();

Description

Returns a list of configured advertising sources for a given cart. This can be used to display a nice drop

down to the customer. Since advertising sources can be configured on a per screen branding level it is

important to make sure the screenBrandingThemeCode is set on the cart object to the proper theme. By

default a new Cart will have the default screen branding theme so that is the list that will be returned when

this function is called.

Parameters

None – the global cart variable is automatically submitted for this call.

Result

String[]– an array of advertising sources. This will be an empty array if you have not configured

any advertising sources.

28

getAllowedCountries

Method Signature

String[] getAllowedCountries();

Description

Returns a list of all the countries that this merchant has configured to allow the customer to purchase from.

This list should be used to display a drop down list to the customer. It is very important that the country

values on your Cart object match something in this list.

Parameters

None

Result

String[] – a list of all the countries that can be purchased from in the checkout.

29

getCart

Method Signature

Cart getCart(String cartId);

Description

Fetches the cart associated with the specific cartId.

Parameters

String cartId – The cartId associated with the cart. This should come from the result of a

createCart call that was stored in a cookie and then read back from the client.

Result

Cart – The cart associated with the cartId. This can be null if the cart has expired and been

purged. You should be prepared to check for this condition and make a new call to createCart

to setup a new cart.

getCartInstance

Method Signature

Cart getCartInstance();

Description

This method retrieves the cart associated with this customer. It handles all the cookie setup, new cart

creation, existing cart retrieval, etc. If it is called more than once on a page then it will return the global cart

variable that has already been initialized.

Parameters

None

Result

Cart – the customer's shopping cart.

30

getCartItemMultimediaThumbnail

Method Signature

CartItemMultimediaThumbnail getCartItemMultimediaThumbnail(CartItem cartItem,

CartItemMultimedia cartItemMultimedia, int width, int height);

Description

Creates a thumbnail of the specified width and height for the given multimedia object.

Parameters

CartItem – The item that the multimedia object is associated with.

CartItemMultimedia – The multimedia object that you want a thumbnail of.

int width – the width of the thumbnail

int height – the height of the thumbnail

Result

If the system is able to create the thumbnail in real-time it will return a

CartItemMultimediaThumbnail object. This method can return null if the system is unable to

create the thumbnail in real-time or the thumbnail is not ready from a background creation.

getCheckoutTerms

Method Signature

CheckoutTerms getCheckoutTerms();

Description

Retrieves the checkout terms associated with a cart.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

CheckoutTerms – The checkout terms appropriate for this cart. This will be null if the cart has

not already been created.

31

getCustomerProfile

Method Signature

CustomerProfile getCustomerProfile();

Description

Retrieves the customer profile associated with a cart. This can be performed after a successful login to

retrieve information about the customer profile.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

CustomerProfile – the customer profile associated with the cart. This will be null if the cart is

not logged in to a specific customer profile.

getGiftSettings

Method Signature

GiftSettings getGiftSettings();

Description

Retrieves all the gift giving settings related to a specific cart. This includes whether gift giving is available,

the fees associated with gift giving, the maximum message size, the wrapping papers available, etc.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

GiftSettings – the gift giving settings for the specific cart.

32

getItem

Method Signature

Item getItem(String itemId);

Description

Retrieves an item with the specified itemId.

Parameters

String –item id to retrieve.

Result

Item– the item object. If you specified an invalid item id in the parameter then the item will be

null.

getItemMultimediaThumbnail

Method Signature

ItemMultimediaThumbnail getItemMultimediaThumbnail(Item item, ItemMultimedia

itemMultimedia, int width, int height);

Description

Creates a thumbnail of the specified width and height for the given multimedia object.

Parameters

Item – The item that the multimedia object is associated with.

ItemMultimedia – The multimedia object that you want a thumbnail of.

int width – the width of the thumbnail

int height – the height of the thumbnail

Result

If the system is able to create the thumbnail in real-time it will return a

ItemMultimediaThumbnail object. This method can return null if the system is unable to create

the thumbnail in real-time or the thumbnail is not ready from a background creation.

33

getItems

Method Signature

Item[] getItems(String[] itemIds);

Description

Retrieves an array of items with the specified itemIds.

Parameters

String[] – an array of item ids to retrieve.

Result

Item[]– the array of item objects. If you specified an invalid item id in the parameter then the

item will not be present in the result.

getParameterValues

Method Signature

String getParameterValue(String parameterName);

Description

Reads the value for the parameter specified.

Parameters

String parameterName – The name of the parameter that should be retrieved.

Result

String – the value of the parameter. If the parameter was not specified then null will be

returned.

34

getParameterValues

Method Signature

String[] getParameterValues (String parameterName);

Description

Reads the values for the parameter specified. Since a parameter can be specified multiple times

on a query string this function returns an array.

Parameters

String parameterName – The name of the parameter that should be retrieved.

Result

String[] – array of values read from the query string. This array will be empty if there are no

occurrences of the parameter.

getRelatedItems

Method Signature

Item[] getRelatedItems();

Description

Returns an array of all the items that are related to the items in the cart. This can be used to display

additional items to the customer for purchase.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

Item[]– an array of related items.

35

getReturnPolicy

Method Signature

String getReturnPolicy();

Description

Returns the configured return policy for a given cart. This should be displayed to the customer somewhere

during the checkout process. Since the return policy can be configured on a per screen branding level it is

important to make sure the screenBrandingThemeCode is set on the cart object to the proper theme. By

default a new Cart will have the default screen branding theme so that is the return policy that will be

returned when this function is called.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

String – the return policy for the given cart.

getStateProvinces

Method Signature

String[] getStateProvinces(String country);

Description

Retrieves a list of valid states/provinces for the specified country. This can be used to display this field as a

nice drop down list for certain countries. This call uses a dataset contained in the checkoutapi.js file so the

call does not go remotely to UltraCart. This makes it extremely fast.

Parameters

String country – The country to retrieve the states for.

Result

String[]– The list of valid states. If this list is empty then UltraCart does not have a built in state

list in which case the client should display the state field as a regular text field.

36

getStateProvinceCodes

Method Signature

String[] getStateProvinceCodes(String country);

Description

Retrieves a list of valid states/provinces for the specified country. This can be used to display this field as a

nice drop down list for certain countries. This call uses a dataset contained in the checkoutapi.js file so the

call does not go remotely to UltraCart. This makes it extremely fast.

Parameters

String country – The country to retrieve the states for.

Result

String[]– The list of valid state/province codes. If this list is empty then UltraCart does not have

a built in state list in which case the client should display the state field as a regular text field.

getTaxCounties

Method Signature

String[] getTaxCounties();

Description

Retrieves the tax counties for a given Cart. A customer will need to select from a tax county if the

information contained in their address is not enough to select a tax rate. This method call only needs to be

used if the merchant has configured taxes beyond the state level, but has not gone all the way down to the

zip code level. Some cities may belong in more than one county so it's necessary to ask the customer

which county they're in.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

String[] – an array of tax counties that the customer needs to select from. If this array is empty

then there is no need to prompt the customer to select a tax county.

37

googleCheckoutHandoff

Method Signature

CheckoutHandoffResult googleCheckoutHandoff(String returnOnErrorUrl, String

errorMessageParameterName);

Description

Hands off the customer's cart to Google Checkout.

Parameters

String returnOnErrorUrl – the URL to return the browser to if there are any errors.

String errorMessageParameterName – the query string parameter name to put the errors into.

If there is more than one error then there will be multiple parameters on the query string with

the same name. Be careful to read and display these errors to the customer properly.

Result

CheckoutHandoffResult – Inspect the errors array on the handoff object. If there are any errors

you'll need to display them to the customer first and have them correct them before they can

continue. If there are no errors then there will be a redirectToUrl populated. You will need to

change the browser's window location to this URL to successfully hand off the browser to

Google Checkout.

googleCheckoutHandoffOnCustomSSL

Method Signature

CheckoutHandoffResult googleCheckoutHandoffOnCustomSSL(String secureHostName, String

returnOnErrorUrl, String errorMessageParameterName);

Description

Hands off the customer's cart to Google Checkout. The googleChekcoutHandoff method above should be

used if the merchant does not have a custom SSL on their account.

Parameters

String secureHostName – The custom SSL host name to use during the hand off.

String returnOnErrorUrl – the URL to return the browser to if there are any errors.

String errorMessageParameterName – the query string parameter name to put the errors into.

If there is more than one error then there will be multiple parameters on the query string with

the same name. Be careful to read and display these errors to the customer properly.

Result

CheckoutHandoffResult – Inspect the errors array on the handoff object. If there are any errors

you'll need to display them to the customer first and have them correct them before they can

continue. If there are no errors then there will be a redirectToUrl populated. You will need to

38

change the browser's window location to this URL to successfully hand off the browser to

Google Checkout.

initializeCheckoutApi

Method Signature

void initializeCheckoutApi(String merchantId, String secureHostName, String callbackUrl);

Description

This method initializes all the settings of the checkout API. This method should be called before any other

methods are called.

Parameters

String merchantId – The UltraCart merchant ID to create this cart against.

String secureHostName (optional) – If you're using a custom SSL with UltraCart then this should

be your custom SSL domain name.

String callbackUrl (optional) – If you're creating a custom checkout on our own website instead

of in an UltraCart dynamic catalog then you'll need to specify the URL of the relay script. This

URL must be an HTTPS URL to make sure all the communication with our server is secure.

Result

None

logError

Method Signature

void logError(String message);

Description

Records an error in the UltraCart checkout API call history. You should use try/catch blocks around your

javascript and log the errors so that you can monitor the performance of your custom checkout and know

that the customer's are not experiencing any problems. The message will automatically include the

browser's name, version, and the platform it's running on. This will make it easier to know if a specific

browser is having issues with your javascript code.

Parameters

String message – The error message to record. This can be up to 2,000 characters of data. If

you submit more than 2,000 characters the message will be truncated and recorded so there is

no need to do client side checks on the length.

Result

None

39

loginCustomerProfile

Method Signature

CustomerProfile loginCustomerProfile(String email, String password);

Description

Logs in a customer profile for the given cart using the email address and password specified. This will allow

the cart to reflected the discounted prices that are available to them as well as utilize their address book.

The global cart variable is automatically submitted with this call.

Parameters

String email – email address of the customer profile.

String password – password of the customer profile.

Result

CustomerProfile – If the login is unsuccessful then the result of this call will be null. This does

not mean that the cart has been lost. It's just a way of indicating an error condition so be

careful to just check the result and not assign it to your cart variable in the page.

logoutCustomerProfile

Method Signature

Cart logoutCustomerProfile();

Description

Logs out a customer profile from a cart.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

Cart – the updated cart reflecting the customer profile logout. The prices will return to retail

levels. The global cart variable is automatically updated after this call.

40

paypalHandoff

Method Signature

CheckoutHandoffResult paypalHandoff(String returnOnErrorUrl, String

errorMessageParameterName);

Description

Hands off the customer's cart to PayPal

Parameters

String returnOnErrorUrl – the URL to return the browser to if there are any errors.

String errorMessageParameterName – the query string parameter name to put the errors into.

If there is more than one error then there will be multiple parameters on the query string with

the same name. Be careful to read and display these errors to the customer properly.

Result

CheckoutHandoffResult – Inspect the errors array on the handoff object. If there are any errors

you'll need to display them to the customer first and have them correct them before they can

continue. If there are no errors then there will be a redirectToUrl populated. You will need to

change the browser's window location to this URL to successfully hand off the browser to

PayPal.

paypalHandoffOnCustomSSL

Method Signature

CheckoutHandoffResult paypalHandoffOnCustomSSL(String secureHostName, String

returnOnErrorUrl, String errorMessageParameterName);

Description

Hands off the customer's cart to PayPal. The paypalHandoff method above should be used if the merchant

does not have a custom SSL on their account.

Parameters

String secureHostName – The custom SSL host name to use during the hand off.

String returnOnErrorUrl – the URL to return the browser to if there are any errors.

String errorMessageParameterName – the query string parameter name to put the errors into.

If there is more than one error then there will be multiple parameters on the query string with

the same name. Be careful to read and display these errors to the customer properly.

Result

CheckoutHandoffResult – Inspect the errors array on the handoff object. If there are any errors

you'll need to display them to the customer first and have them correct them before they can

continue. If there are no errors then there will be a redirectToUrl populated. You will need to

41

change the browser's window location to this URL to successfully hand off the browser to

PayPal.

removeCoupon

Method Signature

Cart removeCoupon(String couponCode);

Description

Removes a coupon from the cart. The global cart variable is automatically submitted with this call.

Parameters

String couponCode – the coupon code to remove.

Result

Cart – the updated cart the reflects the removal of the coupon. The global cart variable is

automatically updated after this call.

removeGiftCertificate

Method Signature

String[] removeGiftCertificate();

Description

Removes the gift certificate from the cart. The global cart variable is automatically submitted with this call.

Parameters

None.

Result

String[] – All the errors that occurred while trying to remove the gift certificate from the cart. If

this array is empty then the removal was successful. If this array contains any values then you'll

want to display the errors to the customer. Even if the errors array contained something the

global cart variable is automatically updated.

removeItem

Method Signature

String[] removeItem(String itemId);

Description

Removes the specified item ids from the cart.

42

Parameters

String itemId – An item Id to remove from the cart.

Result

String[] – All the errors that occurred while trying to remove the item to the cart. If this array is

empty then the removal was successful. If this array contains any values then you'll want to

display the errors to the customer. Even if the errors array contained something the global cart

variable is automatically updated.

removeItems

Method Signature

String[] removeItems(String[] itemIds);

Description

Removes the specified item ids from the cart.

Parameters

String[] itemIds – An array of item Ids to remove from the cart.

Result

String[] –All the errors that occurred while trying to remove items to the cart. If this array is

empty then the removal was successful. If this array contains any values then you'll want to

display the errors to the customer. Even if the errors array contained something the global cart

variable is automatically updated.

resetCustomerProfilePassword

Method Signature

String resetCustomerProfilePassword(String email);

Description

Resets the password associated with the email address and sends out an email with it immediatey.

Parameters

String email – Email address of a customer profile.

Result

A string representing the result. “Success” will be returned if the reset succeeded otherwise the

string will contain an error message.

43

setFinalizeAfter

Method Signature

boolean setFinalizeAfter(int minutes);

Description

Sets the finalize order after timer for the specified minutes. This should be called whenever you load a

custom upsell after page. This timer expiring is what turns a shopping cart into an order if they abandon

during your custom upsell after sequence.

Parameters

int minutes – the number of minutes without activity before the cart is turned into an order.

Result

Returns true if the timer was successfully set.

subscribeToAutoResponder

Method Signature

String[] subscribeToAutoResponder (String autoResponderName, String[] listIds);

Description

Subscribes the customer to the specified auto responder name. This works like using the

parameters on the buy link. See the AUTO_RESPONDER_ constants in the checkoutapi.js for the

proper names to pass in. Make sure that you've set at least the customer's email address on

the cart object before calling this method. The global cart object is automatically submitted

with this method and updated after the fact. Most auto responder's store information about

the list's they're subscribing the customers to in the custom fields of the cart.

Parameters

String autoResponderName – name of the auto responder service.

String[] listIds – The name or IDs of the lists to subscribe them to. This works just like the values

you would specify on the buy link parameters as documented for your auto responder.

Result

String[] – array of errors that occurred while trying to subscribe the customer.

44

updateCart

Method Signature

Cart updateCart()

Description

Updates all the fields on a cart, except for the item information. You should call these after updating

information like billing, shipping, payment, etc. The cart does not have to be passed ot this method because

the method knows to submit the global cart variable.

Parameters

None

Result

Cart – the updated cart object. This will have recalculated values as a result of the update. The

global cart variable is automatically updated after this call is complete.

updateCustomerProfile

Method Signature

boolean updateCustomerProfile(CustomerProfile customerProfile)

Description

Update the customer profile associated with the cart using the information contained in the customerProfile

object If you want to change the password on a customer profile they must be successfully logged into the

profile first, then set the new password on the customer profile object, and then call the

updateCustomerProfile method.

Parameters

CustomerProfile customerProfile – All the customer profile information to update including their

billing and shipping address books.

Result

Boolean – true if the update is successful.

45

updateItems

Method Signature

String[] updateItems(CartItem[] items);

Description

Updates all the items in the cart. The minimum amount of information that must be specified on the

CartItem object is itemId and quantity. If you want to pass in options then you'll also need to populate those

fields. This call should contain all of the items in the cart. It is a complete update, not a partial one.

Parameters

Item[] items – The array of items to update on the cart.

Result

String[] – All the errors that occurred while trying to update the items to the cart. If this array is

empty then the addition was successful. If this array contains any values then you'll want to

display the errors to the customer. This could include things like out of stock conditions, invalid

item ids, etc. Even if the errors array contained something the global cart variable is updated.

validate

Method Signature

String[] validate(String[] checks);

Description

Validates the given cart for the set of validation checks. This is very useful for determining the errors that

need to be displayed on a page. The checks that you choose to validate are dependent upon what your

page is collecting. If you're building a single page checkout then it's better to use the validateAll method

below. The global cart variable is automatically submitted with this call.

Parameters

String[] checks – the checks to perform. See the VALIDATE_ constants located in the

checkoutapi.js file for a list of valid check constants.

Result

String[]– the errors present in the current cart based upon the checks performed.

46

validateAll

Method Signature

String[] validateAll();

Description

Validates the given cart for all validation checks. A full validation of the cart will always occur before a

successful checkoutHandoff will occur so it's a good idea to perform the check and display the errors to the

user gracefully.

Parameters

None – the global cart variable is automatically submitted with this call.

Result

String[]– the errors present in the current cart.

validateGiftCertificate

Method Signature

String[] validateGiftCertificate(String giftCertificateCode);

Description

Validates a gift certificate code.

Parameters

String giftCertificateCode – the gift certificate code to validate.

Result

String[]– any errors associated with the validation of the gift certificate. If this is array is empty

then the gift certificate is valid.

47

Making an Asynchronous Call

All API calls are synchronous unless you specify an optional last parameter at the end of the function

call. Below we'll show you how to make an asynchronous call.

Example of synchronous code

// Make the API call

var shippingEstimates = estimateShipping();

// Consume the result

for (var = i; i < shippingEstimates.length; i++) {

 // Do something with the estimate

}

Example of asynchronous code

// Define a callback function

function myCallbackFunction(shippingEstimates) {

 for (var = i; i < shippingEstimates.length; i++) {

 // Do something with the estimate

 }

}

// Make the asynchronous call

estimateShipping({'async': true, 'onComplete': myCallbackFunction});

Our recommendation is to make the the shipping estimate call asynchronous due to the time it can take

calculate estimates. Make sure that you give the customer a visual indication that shipping estimates

are being calculated. We do not recommend making calls that manipulate the cart asynchronous as it

could cause inconsistancies in the global cart variables contents.

48

Global Variables

The javascript checkout API makes use of some global variables. These variables are described below.

Variable Description

String secureHostName The secure host name that the API should talk back to. This defaults to

secure.ultracart.com. This should be changed only via the initialize call.

String merchantId The merchant ID of the UltraCart account that this cart is for. This should

be set via the initialize call.

String callbackUrl The URL that the checkout api will make server callbacks to.

Cart cart The customer's cart. This will default to null. This variable is automatically

set when you call getCartInstance. All methods that modify this object will

automatically update it when the method completes. There is never a need

to set this variable manually.

Cookie Issues

The getCartInstance method call will read/write a cookie named UltraCartShoppingCartID on your

domain. This cookie will contain the cart ID that is used to fetch the cart when they reload the page.

Make sure you do not manipulate this cookie or remove it in any way. It will break the checkout API.

It's also important that the customer have cookies turned on for this checkout API to work. In today's

world of web 2.0 websites cookies are mandatory to have turned on for most websites to function

properly.

Building a Custom Upsell After Sequence

Normally when you execute the checkout handoff call you are handing off the browser into the tail end

of the regular UltraCart checkout sequence. If you have any upsell afters configured inside of UltraCart

then those will be displayed to the customer, then the in progress screen, and finally the receipt.

If for some reason you need to create custom upsell after pages on your own checkout it is easy to do.

When the customer clicks your finalize order button then send them to your own upsell after page

insead of doing a checkout handoff. When the upsell page loads, make sure to call the setFinalizeAfter

method when the page loads. This will start the timer. If the customer accepts your upsell then add the

new item to the cart and recalculate their shipping. You can chain together as many upsell after pages

on your own site as you would like, but make sure that each time the page loads you call the

setFinalizeAfter timer to reset it. We would recommend 45 minutes as your minute parameter on the

method call. When you get to the end of your own custom upsells, then execute the checkoutHandoff

call like you normally would.

49

XHR Issues and the Relay Script

The current browser security model does not allow for a script loaded from one domain to see or talk to

javascript loaded from another domain. Make sure that you're referencing all scripts (MooTools,

checkoutapi.js, etc.) using HTTPS URLS all from the same domain in your HTML file.

If you're going to create a custom checkout on your own web server then you need to follow of

important steps.

1. Make sure your web server has an SSL certificate. Asking customers to enter their credit card

on a non-SSL site would dramatically lower conversion and pose a security risk.

2. Download the mootools and checkout API javascript files to your server.

https://secure.ultracart.com/checkoutapi/checkoutapi.js

https://secure.ultracart.com/js/mootools-1.2-core-yc.js

3. Download the PHP proxy script from the integration center and place it on your web server. The

PHP script requires that your server have the Curl module with SSL enabled. This is a very

common module to have available in most LAMP hosting environments. An ASP version of the

relay script will be available in the future for Microsoft hosting environments. The direct

download link for the PHP proxy script is:

https://secure.ultracart.com/merchant/integrationcenter/proxy.php

4. Call the initializeCheckoutAPI method with your merchant ID, your custom SSL host name if you

have one or null for the second parameter, and then the HTTPS URL to the relay script that you

have installed on your server.

Let's pretend that I have a site called avkits and the domain is www.avkits.com. I've already installed an

SSL certificate with my hosting company so that I can access the site via https://www.avkits.com or

http://www.avkits.com. I've also downloaded the three files mentioned below to the root directory of

my hosting account. Below is an example of my initialization code for my HTML page:

<script type="text/javascript" src="/mootools-1.2-core-yc.js"></script>

<script type="text/javascript" src="/checkoutapi.js"></script>

<script type="text/javascript">

 initializeCheckoutAPI('AVKIT', null, 'https://www.avkits.com/proxy.php');

</script>

Notice that the URL to proxy script is the complete HTTPS url.

50

Automatic Updating of the Global Cart Variable

To make development easier many of the methods in the checkoutapi.js file automatically submit the

global cart variable parameter to the server as well as update it on the return. This dramatically reduces

the complexity of coding your checkout as well as the scoping issues of trying to pass a cart object

around to other methods. The following methods automatically update the global cart variable:

• addItems

• applyCoupon

• applyGiftCertificate

• clearItems

• establishCustomerProfile

• getCartInstance

• logoutCustomerProfile

• removeCoupon

• removeItems

• removeItem

• updateCart

• updateItems

Call Logging and Javascript Error Handling

During the development stage of your custom checkout it's a good idea to review the checkout API call

log located under the integration center menu. The call log will display the last 100 errors that occurred.

You can also enable the log to record all calls. This can be very helpful to understand not only the

operations your checkout is calling, the order of the operations, the data being submitted as parameters

as well as the results your client received. Once you put your custom checkout into production you

should make sure to turn off the log all calls setting so that only errors are logged. You can then review

your call log periodically to see if any server side or client side errors are occurring.

Implementing buySAFE on a Custom Checkout

Implementing the buySAFE order bonding option on your custom checkout is pretty simple. The two

main pieces code that you'll have to implement are the

Including the buySAFE javascript. This should be included after the checkoutapi.js file, but before any of

your custom checkout javascript.

<script type="text/javascript" src="https://seal.buysafe.com/private/rollover/rollover.js"></script>

51

Define the click handler function. The buySAFE flash control for the bonding will call this method when they toggle
their bonding choice.

<script type="text/javascript">
var buySAFEOnClick = function() {
 // Toggle whether they want buySAFE
 cart.buysafeBondWanted = !cart.buysafeBondWanted;

 // Update the cart. This will fetch new buySAFE bonding code, totals, etc.
 updateCart();

 // Call your piece of code that updates the summary section of the checkout
 // Note you have to implement some kind of method like displayCartTotals
 displayCartTotals();
}
</script>

The final step is displaying the bonding control and the price of the bond. The convention for displaying

the buySAFE control is just above the total. Below is an example of what a checkout should look like

that implements buySAFE:

In the javacsript that you write to display the summary section of the checkout you should first check to

see if the buySAFE bond is available by looking at cart.buysafeBondAvailable and the displaying the

buySAFE line or hiding it. If the bond is available then you need to look at whether the customer is

currently bonded by checking cart.buysafeBondWanted. If this Boolean flag is true then you should

display the bonding signal on the left with the learn more link below and the bond cost to the right. If

the flag is false then just display the bonding signal and learn more link. The cost of the bond is available

from cart.buysafeBondCost.

To display the buySAFE bonding signal your HTML needs to contain an empty span tag with the id of

BuySafeButtonDiv. Below is an example of the HTML:

52

To display the bonding signal inside of the span tag you simply evaluate the javascript contained on the

cart:

<script type="text/javascript">

 eval(cart.buysafeBondingSignalJavascript);

</script>

The javascript contained in the buysafeBondingSignalJavascript field will properly call the buySAFE

javascript and write out the bonding signal.

The learn more link is also very easy to output to your page. Below is some example code:

<script type="text/javascript">

 document.writeln("" + cart. buysafeCartDisplayText + "");

</script>

53

Handling Reloads with Error Messages

When you a checkout handoff the customer's browser is redirected into the UltraCart checkout for

completion. If there are any errors that need to be redisplayed to the customer then UltraCart will

redirect their browser to the URL that you specified in the handoff call. The error messages will appear

in the query string as the parameter specified in the handoff call. Please note that there can be more

than one error that needs to be displayed to the customer. For your convience we have provided the

method getParameterValues which fetches the error messages. Make sure that your javascript code

not only displays the errors, but also should reload all the fields on the page so that customer only needs

to fix the error fields and not respecify everything.

Performance Considerations

The best customer experience will result from the fewest API calls possible. It is your responsibility to

optimize your checkout code to reduce API calls. If you are lazy in your programming your checkout

requires additional optimization then you will have two choices. Either implement the required

suggestions made by UC Pro Services or utilize the premium support of UC Pro Services to have them

implemented for you. Having a poorly written custom checkout that places unnecessary load on the

UltraCart system will not be tolerated. You will have your ability to use the javascript checkout API

removed if you do not follow the rules.

Using JQuery with the Mootools Framework

The Mootools framework that UltraCart's javascript checkout API can be incompatible with other

frameworks. We've tested and built checkouts with the JQuery framework being used as well. In order

to use JQuery with Mootools you should include it in your page after Mootools and use the following

code to object your JQuery instance.

var $j = jQuery.noConflict();

54

Working with JSON Dates

Currently there is no standardized syntax for JSON serliazed date objects. The JavaScript Checkout API

uses a few date objects within the API (primary the shipOnDate and deliveryDate fields on the Cart

object). When are you working with these fields they actually come down from the XHR response as

strings. You will need to use the provided helper methods to transform the strings to JavaScript native

Date objects and vice versa. The syntax of these two helper methods in the checkoutapi.js is:

function ucJsonStringToDate(String s) => Date;

function ucDateToJsonString(Date d) => String;

Below is an example of how to retrieve the shipOnDate, do something with it, and then update the cart

objects:

var d = ucJsonStringToDate(cart.shipOnDate);

// Do some manipulation of the date here.

cart.shipOnDate = ucDateToJsonString(d);

Remember that shipOnDate and deliveryDate can both be null. The JavaScript helper methods will

properly interpret nulls.

